
Scaling for Real

PunchPlatform team

 Agenda

1

punchplatform value

problem statement

Thanks

2

 Problem Statement

What you expect from big streaming data platform
is simple :

- scale to hundreds of thousands of events per sec
- do not loose any
- be cheap yet resilient

In this presentation we highlight the PunchPlatform
way to solve this equation with a focus on writing
the events (typically logs) to disk.

What is explained hereafter actually applies to
writing to Kafka, ElasticSearch, Cassandra, a shared
FileSystems, a CEPH Cluster, HDFS.

As a leading example we will refer to the CEPH
cluster.

 logs

3

 Reading the Data

The PunchPlatform is built on top of Kafka. That is where we read the logs from. Kafka can scale up to very large clusters
(checkout the Linkedin numbers), takes care of replicating the data, and let several consumers consume the data in real time.

In order to scale, producer and consumers write (read) the data in multi partitioned topics. Think of a topic as a giant fifo
structure, divided in several sub-queues called partitions. Several producers write logs. Several consumers read them in real
time. The key factor to scale is the number of partitions. You have one reader for each partition. Each must read fast enough
to continuously consume its partition.

4

 Writing the Data

The problem now is for the consumers to write the data downstream.

The consumers are actually Storm Kafka spouts : Kafka consumer running inside a Storm job. PunchPlatform storm
topologies can be configured easily to have the required number of consumers, each reading at high speed one partition.

You need to couple these with (CEPH or HDFS or …) Storm File bolts. These write the logs to files. How many you have
depend on your need. Typically you have as many or more bolts than spouts.

5

 Data Streaming Terminology

reader == consumer == spout

writer == producer == bolt

6

 Easy ?

Doing what we just explained looks easy. It actually is touchy because:

- to run this at high rate you need a bulk strategy. I.e. you must write files of several Mb instead of just
individual logs of 1K.

- processing is continuous. You can have failures and/or restarts. You want these to have no effect on
the files you end up writing. No loss of logs, no duplicates.

The PunchPlatform provide repeatable and idempotent processing. It achieves eventual consistency
towards one or several storage backend. All these are extremely important features. It allows users to
have their data saved in several backend, and make sure they have the same data in all of them, despite
failures.

These are hard issues. How are they solved ?

7

 Strategy

if failure then replay

disk

batch/bulk processing
acknowledged

idempotent
exactly once

disk

In a nutshell : as follows

This requires : partition identifiers, timestamping, unique identifiers, batch identifiers, smart kafka offset handling,
idempotent bulk file writing, on the fly efficient zero-copy compression, on the fly ciphering … and of course real time

supervision

… in a way manageable by the user. That is what the PunchPlatform provides.

Thanks !

